## Diels–Alder Reactions of 2-(Isoquinolin-1-yl)-5-phenyl-3*H*-pyrrole-3-carboxylic Esters with *N*-Methyl- and *N*-Phenyl-maleimides†

## Sandrine Perrin, Karin Monnier and B. Laude\*

Laboratoire de Chimie et Electrochimie Moléculaire, Université de Franche-Comté, 16 Route de Graym, La Bouloie, 25030 Besançon, France

The reaction between the title compounds produces [4+2] Diels–Alder cycloadducts; the stereochemistry of the reaction is deduced from <sup>1</sup>H NMR data.

As part of our research on the reactivity of the tetrafluoroborate salts of Reissert compounds,<sup>1</sup> we have already described the preparation of 3*H*-pyrrole-3-carboxylic esters **4** by the reaction of the Reissert compound tetrafluoroborate salt **2** with suitably gem-disubstituted  $\alpha$ , $\beta$ -ethylenic esters **3**.<sup>2</sup> When R<sup>3</sup>=H, prolonged heating in toluene converts the



3*H*-pyrrole **4** into the isomeric 1*H*-pyrrole **5** *via* a [1,5] sigma-tropic rearrangement<sup>2</sup> (Scheme 1).

Since Diels–Alder reactions, in which the azole functions as an azadiene, have been observed either directly from 3H-pyrroles<sup>3</sup> or from 2H-pyrroles *via* a [1,5] signatropic rearrangement to 3H-pyrroles,<sup>3-6</sup> it was of interest to study reactions of the 3H-pyrroles derivatives **4** with some dienophiles.<sup>7</sup>

In preliminary studies, the 3*H*-pyrrole **4a** was treated with a variety of dienophiles in toluenic solutions at various temperatures (20-110 °C). Dimethyl acetylenedicarboxylate and methyl esters of propiolic, acrylic, fumaric and maleic acids gave complex mixtures in which the 1*H*-pyrrole **5a** was the major component.

*N*-Methyl- and *N*-phenyl-maleimides proved to be the most useful dienophiles for reactions with the 3*H*-pyrrole derivatives **4**. 3*H*-Pyrroles **4** in toluene under reflux gave moderate to good yields of stable 1:1 adducts **6** (Scheme 2). Physical, analytical, IR ( $\nu$ C=O) and <sup>1</sup>H and <sup>13</sup>C NMR data for the adducts are given in Tables 1 and 2.

<sup>1</sup>H NMR data allowed the diastereochemistry of the cycloadducts **6** to be assigned. According to the literature,<sup>8,9</sup>

 $\begin{array}{c}
 CO_2R^1 & 5f R = Ph \\
 R^2 & g R = Me \\
 R^3 & 0 \\
 Ph \\
 4a-e \\
\end{array}$ 

0



R<sup>1</sup>O<sub>2</sub>C



Fig. 1 NOE enhancements for the cycloadduct 6af

the *exo* oriented H-5 gives a signal in the form of a doublet of doublets owing to two vicinal couplings  ${}^{3}J_{4,5}$  4.3–4.6 Hz (R<sup>3</sup> = H) and  ${}^{3}J_{5,6}$  7.2–7.6 Hz whereas an appropriate *endo* oriented H-5 proton would give only a doublet, since one of the two vicinal proton couplings ( ${}^{3}J_{4,5}$ ) would be close to zero. This *endo* configuration is also the stereochemistry described by Sammes *et al.*<sup>3</sup> for the Diels–Alder adducts of other 3*H*-pyrroles with *N*-phenylmaleimide.

In order to determine the diastereochemistry of the approach between the two reactants towards the ester group of the azadienic 3H-pyrroles 4, NOE difference experiments were carried out with the cycloadducts 6. The observed enhancements are examplified in the case of the cycloadduct **6af** (Fig. 1).

These observations may be extended to all cycloadducts **6** and lead to the choice of the *endo-anti* approach of the maleimide group to the ester group of the azadienic 2H-pyrroles **4**. Thus, the cycloaddition is diastereoselective and the cycloadducts **6** are obtained with simultaneous control of the relative stereochemistry of five chiral centres.

## Experimental

All mps are uncorrected. IR spectra (KBr) were recorded on a Bio-Rad FTS spectrophotometer. <sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded on a Bruker-Spectrospin AC 200 spectrometer in CDCl<sub>3</sub>.

J. Chem. Research (S), 1997, 104–105<sup>†</sup>

R

С

6af, ag, bf

bg, cf, cg

df, dg, ef

0

R

<sup>\*</sup>To receive any correspondence.

<sup>†</sup>This is a **Short Paper** as defined in the Instructions for Authors, Section 5.0 [see *J. Chem. Research* (S), 1997, Issue 1]; there is therefore no corresponding material in *J. Chem. Research* (M).

 Table 1
 Physical and analytical data for 3H-pyrrole Diels–Alder adducts 6

| Adduct                                                                         | R <sup>1</sup> | R <sup>2</sup>                                 | R³ | R  | Yield<br>(%) | Mp<br>7/°C) | Reaction<br>time<br>(t/h) | IR<br>(νC≕Ο)/<br>cm <sup>−1</sup> | Analysis (%)    |               |               |
|--------------------------------------------------------------------------------|----------------|------------------------------------------------|----|----|--------------|-------------|---------------------------|-----------------------------------|-----------------|---------------|---------------|
|                                                                                |                |                                                |    |    |              |             |                           |                                   | Found (r<br>C   | equired)<br>H | N             |
| 6af<br>(C₃₂H₂₅N₃O₄)                                                            | Me             | Me                                             | Н  | Ph | 53           | 288         | 20                        | 1713<br>1773                      | 74.55<br>(74.37 | 4.89<br>4.86  | 8.15<br>7.99) |
| <b>6ag</b><br>(C <sub>27</sub> H <sub>23</sub> N <sub>3</sub> O <sub>4</sub> ) | Me             | Me                                             | Н  | Me | 64           | 187         | 8                         | 1700<br>1710<br>1773              | 71.51<br>(71.67 | 5.11<br>5.22  | 9.27<br>9.07) |
| $\begin{array}{l} \textbf{6bf} \\ (C_{34}H_{27}N_{3}O_{6}) \end{array}$        | Me             | CH₂CO₂Me                                       | Н  | Ph | 26           | 270         | 24                        | 1718<br>1736<br>1758              | 71.19<br>(71.23 | 4.74<br>4.91  | 7.33<br>7.27) |
| 6bg<br>(C <sub>29</sub> H <sub>25</sub> N <sub>3</sub> O <sub>6</sub> )        | Me             | $CH_2CO_2Me$                                   | Н  | Me | 47           | 208         | 8                         | 1702<br>1736                      | 68.09<br>(67.98 | 4.93<br>4.96  | 8.21<br>8.32) |
| 6cf<br>(C <sub>33</sub> H <sub>27</sub> N <sub>3</sub> O₄)                     | Me             | Me                                             | Me | Ph | 16           | 248         | 24                        | 1715<br>1770                      | 74.85<br>(74.77 | 5.14<br>5.22  | 7.93<br>7.86) |
| $\begin{array}{c} \textbf{6cg} \\ C_{28}H_{25}N_{3}O_{4}) \end{array}$         | Me             | Me                                             | Me | Me | 28           | 223         | 8                         | 1700<br>1735<br>1769              | 71.93<br>(72.07 | 5.39<br>5.28  | 8.99<br>8.92) |
| 6df<br>(C <sub>33</sub> H <sub>23</sub> N <sub>3</sub> O <sub>4</sub> )        | $-CH_2CH_2-$   |                                                | Н  | Ph | 46           | 312         | 3                         | 1710<br>1764                      | 74.85<br>(74.78 | 4.51<br>4.62  | 8.18<br>8.12) |
| 6dg<br>(C <sub>27</sub> H <sub>21</sub> N <sub>3</sub> O <sub>4</sub> )        | -CH            | <sub>2</sub> CH <sub>2</sub> —                 | Н  | Me | 49           | 293         | 3                         | 1691<br>1764                      | 71.84<br>(71.93 | 4.67<br>4.82  | 9.31<br>9.17) |
| 6ef<br>(C <sub>33</sub> H <sub>25</sub> N <sub>3</sub> O <sub>4</sub> )        | —CH            | <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> — | Н  | Ph | 40           | 263         | 16                        | 1709<br>1774                      | 75.13<br>(75.27 | 4.78<br>4.69  | 7.96<br>7.89) |

**Table 2** <sup>1</sup>H NMR data (δ ppm/CDCl<sub>3</sub>; J in Hz) for 3H-pyrrole Diels–Alder adducts **6** 

| Adduct | R <sup>1</sup>                 | R <sup>2</sup>                                                | R³                               | H⁵                                                    | He            | R              | Aromatic protons                                    |
|--------|--------------------------------|---------------------------------------------------------------|----------------------------------|-------------------------------------------------------|---------------|----------------|-----------------------------------------------------|
| 6af    | 2.97 (s, 3 H),                 | 1.48 (s, 3 H)                                                 | 4.53 (d, 1 H)                    | 3.80 (dd, 1 H)                                        | 5.57 (d, 1 H) |                | 6.55–6.65 (m, 2 H, ar.)<br>7.10–8.95 (m, 14 H, ar.) |
| 6ag    | 2.95 (s, 3 H)                  | 1.43 (s, 3 H)                                                 | 4.41 (d, 1 H)                    | ,₅ 4.7; <i>J</i> <sub>5,6</sub> 7.6<br>3.64 (dd, 1 H) | 5.40 (d, 1 H) | 2.58 (s, 3 H)  | 7.40–8.85 (m, 11 H, ar.)                            |
| 6bf    | 2.99 (s, 3 H)                  | 2.95 (AB syst., 2 H)<br>J <sub>AB</sub> 17.4<br>3.68 (s. 3 H) | 4.82 (d, 1 H)                    | 3.79 (dd, 1 H)                                        | 5.57 (d, 1 H) |                | 6.55–6.65 (m, 2 H, ar.)<br>7.10–8.85 (m, 14 H, ar.) |
| 6bg    | 2.97 (s, 3 H)                  | 2.90 (AB syst., 2 H)<br>J <sub>AB</sub> 17.4<br>3.67 (s, 3 H) | لم<br>4.70 (d, 1 H)              | ,₅ 4.3; <i>J</i> <sub>5,6</sub> 7.6<br>3.62 (dd, 1 H) | 5.39 (d, 1 H) | 2.58 (s, 3 H)  | 7.40–8.75 (m, 11 H, ar.)                            |
| 6cf    | 2.90 (s, 3 H)                  | 1.33 (s, 3 H)                                                 | J <sub>4</sub><br>2.01 (s, 3 H)  | ,₅ 4.3; <i>J</i> <sub>5,6</sub> 7.4<br>3.42 (d, 1 H)  | 5.56 (d, 1 H) |                | 6.74–6.80 (m, 2 H, ar.)<br>7.15–8.95 (m, 14 H, ar.) |
| 6cg    | 2.88 (s, 3 H)                  | 1.29 (s, 3 H)                                                 | 1.93 (s, 3 H)                    | J <sub>5,6</sub> 7.7<br>3.26 (d, 1 H)                 | 5.39 (d, 1 H) | 2.69 (s, 3 H)  | 7.40–8.82 (m, 11 H, ar.)                            |
| 6df    | 4.11 (m, 1 H)<br>3.83 (m, 1 H) | 2.12 (t, 2 H)                                                 | 4.40 (d, 1 H)                    | 4.71 (dd, 1 H)                                        | 4.57 (d, 1 H) |                | 6.65–6.75 (m, 2 H, ar.)<br>7.10–9.60 (m, 14 H, ar.) |
| 6dg    | 3.91 (t, 1 H)                  | 2.48 (m, 1 H)<br>2.70 (m., 2 H)                               | J <sub>4</sub><br>4.28 (d,. 1 H) | ,₅ 4.6; <i>J</i> <sub>5,6</sub> 7.5<br>3.58 (dd, 1 H) | 5.50 (d, 1 H) | 2.60 (s., 3 H) | 7.45–8.95 (m, 11 H, ar.)                            |
| 6ef    | 3.95 (m, 1 H)<br>4.30 (m, 1 H) | 1.50–1.90 (m, 4 H)                                            | J <sub>4</sub><br>4.45 (d, 1 H)  | ,₅ 4.4; <i>J</i> <sub>5,6</sub> 7.5<br>3.68 (dd, 1 H) | 5.71 (d, 1 H) |                | 6.65–6.75 (m, 2 H, ar.)<br>7.20–9.55 (m, 14 H, ar.) |

Analytical data were performed by the CNRS Vernaison (France). 3*H*-Pyrroles **4** were obtained by literature methods.<sup>2</sup>

Preparation of Cycloadducts 6.—General procedure. A solution of 3H-pyrrole 4 (2 mmol) and N-methyl- or N-phenyl-maleimide (2.2 mmol) toluene (20 ml) was heated under reflux for an appropriate time (Table 1). The reaction mixture was then left at room temperature for 12 h. In the case of 6df, dg and ef, a small quantity of the rearranged 1H-pyrrole 5 crystallised. After filtration, the solution was evaporated and the obtained solid recrystallised from ethanol.

Received, 8th November 1996; Accepted, 25th November 1996 Paper E/6/07614I

## References

1 D. Adnani, G. Schmitt, K. Monnier, B. Laude, M. M. Kubicki and

M. Jannin, J. Chem. Res., 1996, (S) 74; (M) 0534 and references cited therein.

- 2 S. Perrin, K. Monnier and B. Laude, Bull. Soc. Chim. Belg., 1996, 105, 777.
- 3 K. H. Lui, T. F. Lai and M. P. Sammes, J. Chem. Res., 1989, (S) 244; (M) 1759.
- 4 A. Eddaïf, A. Laurent, P. Mison and N. Pelissier, *Tetrahedron Lett.*, 1984, 26, 2779; A. Eddaïf, A. Laurent, P. Mison, N. Pelissier, P. A. Carrupt and P. Vogel, *J. Org. Chem.*, 1987, 52, 5548.
- 5 P. H. Daniels, J. L. Wong, J. L. Atwood, L. G. Canada and R. D. Rogers, J. Org. Chem., 1979, 45, 435; B. K. Rammash, C. M. Gladstone and J. L. Wong, J. Org. Chem., 1981, 46, 3036.
- 6 M. E. Jung and J. J. Shapiro, J. Am. Chem. Soc., 1980, 102, 7862.
- 7 M. P. Sammes, personal communication.
- 8 T. Lakhlifi, A. Sedqui, B. Laude, Nguyen Dinh An and J. Vebrel, *Can. J. Chem.*, 1991, **69**, 1156.
- 9 H. Krawczyk and A. Gryff-Keller, *J. Chem. Res.*, 1996, (S) 452; (M) 2583.